ON SOME FIXED POINT THEOREMS FOR MAPPINGS SATISFYING A NEW TYPE OF IMPLICIT RELATION

Valeriu Popa

Abstract. In this paper we introduce a new class of functions $F : \mathbb{R}^6_+ \to \mathbb{R}$ such that the fulfilment of the inequality of type (3) for x, y in X, ensures the existence and the uniqueness of a fixed point.

1. Introduction

The notion of contractive mapping has been introduced by Banach in [1].

In the last thirty years different types of generalizations of this concept appeared. The connection between them have been studied in different papers, for example [2], [3], [5]-[9].

Let (X,d) be a metric space and $T: (X,d) \to (X,d)$ a mapping in essence, T is a generalized contraction if an inequality of type

(1)
$$d(Tx,Ty) \le f\left(d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\right)$$

holds for $x, y \in X$, where $f : \mathbb{R}^5_+ \to \mathbb{R}$ satisfies some properties or has a special form.

In [4], the present author established a class of mappings $F: R^6_+ \to R$ such as the fulfilment of the inequality of type

(2)
$$F(d(Tx,Ty), d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)) \le 0$$

for $x, y \in X$, ensures the existence and the uniqueness of a fixed point for T. The number of this paper is to introduce a new class of mappings

The purpose of this paper is to introduce a new class of mappings $F: \mathbb{R}^6_+ \to \mathbb{R}$ such that the fulfilment of the inequality of type

(3)
$$F(d(Tx,Ty), d(x,y), d(x,Ty), d(y,Ty), d(y,T^2x), d(y,Tx)) \le 0$$

for $x, y \in X$, ensures the existence and the uniqueness of a fixed point for T.

AMS (MOS) Subject Classification 1991. Primary: 54H25

Key words and phrases: Fixed point, complete metric space, compact metric space, implicit relation.

2. Implicit relations

Let Φ be the set of all real continuous functions $F(t_1, ..., t_6) : R_+^6 \to R$ satisfying the following conditions:

 \emptyset_1 :F is nonincreasing in variable t_5 ,

 \emptyset_h : there exists $h \in [0, 1)$ such that for every $u, v \ge 0$

 $F(u, v, v, u, u, 0) \le 0$ implies $u \le hv$;

 $\emptyset_u : F(u, u, 0, 0, u, u) > 0, \forall u > 0.$

Ex.1. $F(t_1, ..., t_6) = t_1^2 - at_5t_6 - bmax\{t_2^2, t_3^2, t_4^2\}$, where $a > 0, b \ge 0$ and a + b < 1.

 (\emptyset_1) : Obviously.

 (\emptyset_h) : Let $u > 0, v \ge 0$ and $F(u, v, v, u, u, 0) = u^2 - bmax\{u^2, v^2\} \le 0$. If $u \ge v$ then $u^2(1-b) < 0$, a contradiction. Thus u < v and $u \le hv$, where $h = \sqrt{b} < 1$.

If u = 0 and $v \ge 0$ then $u \le hv$.

 $(\emptyset_u)F(u, u, 0, 0, u, u) = u^2(1 - a - b) > 0, \forall u > 0.$

Ex.2. $F(t_1, ..., t_6) = t_1^2 - at_5t_6 - t_1(bt_2 + ct_3 + dt_4)$, where $a, b, c, d \ge 0$ and a + b + c + d < 1.

 (\emptyset_1) : Obviously.

 (\emptyset_h) : Let $u > 0, v \ge 0$ and $F(u, v, v, u, u, 0) = u^2 - u(bv + cv + du) \le 0$. Then $u \le hv$, where h = c + b/1 - d < 1. If $u = 0, v \ge 0$ then $u \le hv$.

 $(\emptyset_u): F(u, u, 0, 0, u, u) = u^2(1 - a - b) > 0, \forall u > 0.$

Ex.3. $F(t_1, ..., t_6) = t_1^3 - at_1^2 t_2 - bt_1 t_2^2 - ct_2 t_3 t_4 - dt_5^2 t_6$, where $a > 0, b, c, d \ge 0$ and a + b + c + d < 1.

 (\emptyset_1) : Obviously.

 (\emptyset_2) : Let $u > 0, v \ge 0$ and $F(u, v, v, u, u, 0) = u^3 - au^2v - buv^2 - cuv^2 \le 0$, which implies $u^2 - auv - (b+c)v^2 \le 0$. If b = c = 0, then $u \le hv$, where 0 < h = a < 1.

If b + c > 0 then $f(t) = (b + c)t^2 + at - 1 \ge 0$, where t = v/u > 0. Since f(1) = (a + b + c) - 1 < 0, let r > 1 be the root of equation f(t) = 0. Then f(t) > 0 for t > r which implies $u \le hv$, where h = 1/r < 1. If u = 0 then $u \le hv$.

 $(\emptyset_u): F(u, u, 0, 0, u, u) = u^3(1 - a - b - d) > 0, \forall u > 0.$

3. Fixed points in complete metric spaces

Theorem 1. Let (X, d) be a metric space and $T : (X, d) \to (X, d)$ be a mapping satisfying the inequality (3) for every $x, y \in X$, where F satisfies condition (\emptyset_u) . Then T has at most one fixed point. **Proof.** Suppose that T has two fixed points u and v with $u \neq v$. Then by (3) we have successively

$$F\Big(d(Tu, Tv), d(u, v), d(u, Tu), d(v, Tv), d(v, T^2u), d(v, Tu)\Big) \le 0$$
$$F\Big(d(u, v), d(u, v), 0, 0, d(u, v), d(u, v)\Big) \le 0,$$

a contradiction of (\emptyset_u) .

Theorem 2. Let (X, d) be a metric space and $T : (X, d) \to (X, d)$ be a mapping such that there exists $h \in [0, 1)$ with $d(T^2x, Tx) \leq hd(x, Tx)$ for every $x \in X$. Then for every $x \in X$ the sequence $\{T^nx\}$ is a Cauchy sequence.

Proof. Let $x \in X$ and the sequence $\{T^nx\}$. Since $d(T^2x, Tx) \leq hd(x, Tx)$ by induction we have $d(T^{n+1}x, T^nx) \leq h^n d(x, Tx)$. By a routine calculation it follows that $\{T^nx\}$ is a Cauchy sequence.

Theorem 3. Let (X, d) be a complete metric space and $T : (X, d) \rightarrow (X, d)$ a mapping satisfying the inequality (3) for every $x, y \in X$ where $F \in \Phi$. Then T has a unique fixed point.

Proof. Let x be arbitrary in X. We shall show that the sequence defined by $x_{n+1} = Tx_n$ is a Cauchy sequence. From (3) for y = Tx we have

$$F\Big(d(Tx, T^2x), d(x, Tx), d(x, Tx), d(Tx, T^2x), d(Tx, T^2x), 0\Big) \le 0.$$

By (\emptyset_h) we have $d(T^2x, Tx) \leq h \cdot d(x, Tx)$. By Theorem 2, $x_{n+1} = T^n x$ is a Cauchy sequence. Since (X, d) is complete, there exists $u \in X$ such that $\lim x_n = u$.

By (3) we have successively

$$F\left(d(Tx_n, Tu), d(x_n, u), d(x_n, Tx_n), d(u, Tu), d(u, T^2x_n), d(u, Tx_n)\right) \le 0.$$

$$F\left(d(x_{n+1}, Tu), d(x_n, u), d(x_n, x_{n+1}), d(u, Tu), d(u, x_{n+2}), d(u, x_{n+1})\right) \le 0.$$

Letting n tend to infinity we have successively

$$F(d(u,Tu), 0, 0, d(u,Tu), 0, 0) \le 0,$$

$$F(d(u,Tu), 0, 0, d(u,Tu), d(u,Tu), 0) \le 0,$$

which implies by (\emptyset_h) that u = Tu. By Theorem 1 u is the unique fixed point of T.

Corollary 1. Let (X, d) be a complete metric space and $T : (X, d) \rightarrow (X, d)$ satisfying one of the following inequalities:

 $(1.1) \ d^2(Tx,Ty) \leq ad(y,T^2x)d(y,Tx) + b \max\{d^2(x,y),d^2(x,Tx),d^2(y,Ty)\},$

where $a > 0, b \ge 0$ and a + b < 1, or

(1.2)
$$\begin{aligned} & d^2(Tx,Ty) \le \\ & ad(y,T^2x)d(y,Tx) + d(Tx,Ty)(bd(x,y) + cd(x,Tx) + dd(y,Ty)) \end{aligned}$$

where $a, b, c, d \ge 0$ and a + b + c + d < 1, or

(1.3)
$$\begin{aligned} d^3(Tx,Ty) - ad^2(Tx,Ty)d(x,y) - bd(Tx,Ty)d^2(x,y) - \\ cd(x,y)d(x,Tx)d(y,Ty) - d \cdot d^2(y,T^2x) \cdot d(y,Tx) \leq 0, \end{aligned}$$

where $a > 0, b, c, d \ge 0$ and a + b + c + d < 1 for all x, y in X, then T has unique fixed point.

Remark 1. Let Ψ be the set of all real continuous functions $F(t_1, ..., t_6)$: $R^6_+ \to R$ satisfying the following conditions:

 (Ψ_1) : F is nonincreasing in variable t_5 ,

 $(\Psi_h):$ there exists $h\in[0,1)$ such that for every $u,v\geq 0,$ $F(u,v,u,v,u,0)\leq 0$ implies $u\leq h\cdot v,$

 $(\Psi_u): F(u, u, 0, 0, u, u) > 0, \forall u > 0.$

Theorem 4. If the inequality

(4)
$$F(d(Tx,Ty), d(x,y), d(x,Tx), d(y,Ty), d(x,T^2y), d(x,Ty)) \le 0$$

holds for all x, y in X, where $F \in \Psi$, then F has a unique fixed point.

Proof. The proof is similar to the proof of Theorem 3.

4. Fixed points in compact metric spaces

Let $\overline{\Phi}$ be the set of all real continuous functions $F(t_1, ..., t_6) : R^6_+ \to R$ satisfying the following conditions:

 $\begin{array}{l} (\overline{\Phi_h}) \text{: For every } u \geq 0, v > 0, F(u,v,v,u,u,0) < 0 \text{ implies } u < v, \\ (\overline{\Phi_u}) \text{: } F(u,u,0,0,u,u) > 0, \forall u > 0. \end{array}$

Remark 2. The functions F from Ex. 1-3 satisfies conditions $(\overline{\Phi_h})$ and $(\overline{\Phi_u})$.

Remark 3. There exists functions $F \in \overline{\Phi}$ which is increasing in variable t_5 .

$$\begin{aligned} \mathbf{Ex.4.} \ F(t_1,...,t_6) &= t_1^3 - c \frac{t_2 t_3 t_4}{1 + t_5 + t_6}, \text{ where } 0 < c < 1. \\ (\overline{\Phi_h}): \text{ Let } u, v > 0 \text{ and } F(u, v, v, u, u, 0) &= u^3 - c \frac{v^2 u}{1 + u} < 0, \text{ then } u^2 < \\ \frac{c}{1 + v} v^2 \text{ which implies } u < v. \text{ If } u = 0, \text{ then } u < v. \\ (\overline{\Phi_u}): F(u, u, 0, 0, u, u) &= u^3 > 0, \forall u > 0. \end{aligned}$$

Theorem 5. Let T be a continuous mapping of the compact metric space (X, d) into itself such that

(5)
$$F(d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty),d(y,T^2x),d(y,Tx)) < 0$$

for every $x \neq y$ in X, where $F \in \overline{\Phi}$. Then T has a unique fixed point.

Proof. Let f(x) = d(x, Tx) for all $x \in X$. Since T is continuous, there exists a point $z \in X$ such that $f(z) = inf\{f(x) : x \in X\}$. Suppose that $z \neq Tz$.

By (5) for x = z and y = Tz we obtain

$$F\Big(d(Tz, T^2z), d(z, Tz), d(z, Tz), d(Tz, T^2z), d(Tz, T^2z), 0\Big) < 0$$

which implies $d(Tz, T^2z) < d(z, Tz) = inf\{d(x, Tx) : x \in X\}$. A contradiction.

Hence, z = Tz. From Theorem 1 z is the unique fixed point of T.

Corollary 2. Let T be a continuous mapping of the compact metric space (X, d) into itself such that

$$d^{3}(Tx, Ty) < c \frac{d(x, y)d(x, Tx)d(y, Ty)}{1 + d(y, T^{2}y) + d(y, Tx)}$$

for all $x \neq y$ in X and 0 < c < 1. Then T has a unique fixed point.

Proof. The proof follows from Theorem 5 and Ex.4.

Remark 4. A Corollary analogous to Corollary 1 is obtained by Ex.1-3.

Remark 5. A Theorem similar to Theorem 4 is obtained for compact metric space.

5. References

- S. Banach: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3(1922), 133-181.
- [2] J.Kincses and V.Totik: Theorems and counter-examples on contractive mappings, Math.Balcanica, 4(1990), 69-90.
- [3] S.Park: On general contractive type conditions, J.Korean Math.Soc. 17(1980), 131-140.
- [4] V.Popa: Fixed point theorems for implicit contractive mappings, Stud. Cerc.St., ser.Matem., 7(1997), 129-133.
- [5] B.E.Rhoades: A comparison of various definitions of contractive mappings, Trans.Amer.Math.Soc., 226(1971), 257-290.

- [6] B.E.Rhoades: A collections of contractive definitions, Math.Semin.Notes, 7(1979), 229-235.
- [7] B. E. Rhoades: Contractive definitions revisited, Topological Methods in Non-Linear Analysis, Contemporary Mathematics, AMS 21(1983), 189-205.
- [8] B.E.Rhoades: Contractive definitions, Non Linear Analysis (Ed. T. M. Rassias), World Scientific Publishing Company, New Jersey (1988) 513-526.
- [9] M. R. Tasković: Some new principles in fixed point theory, Math. Japonica, 35(1990) 645-666.

Department of Mathematics University of Bacau 5500 Bacau, Romania e-mail:vpopa@ub.ro